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A simple spin system with self-interaction is proposed and studied where the interaction among spins is
taken into account within a mean field model. The self-interaction, which turns out to be a kind of activation
energy, gives rise to slow relaxation due to disorder introduced to the self-interaction. In a thermodynamic limit
�N→��, a phase diagram is obtained and a spin-spin time correlation function �TCF� is calculated exactly to
show that relaxation time diverges at low temperature. Dynamical property of a finite system, such as relax-
ation of the TCF, is studied by numerically solving a master equation.
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I. INTRODUCTION

With use of statistical mechanical methods, such as the
canonical ensemble theory, much progress has been achieved
in the field of phase transition �1,2�. To discuss dynamical
properties such as relaxation to equilibrium states or time
correlation functions, related to fluctuations around equilib-
rium states, Glauber dynamics �3� has often been employed
if we take, e.g., spin systems which we study below.

In this Brief Report we consider a spin system with self-
interaction �SI�. So long as we know, SI has not been paid
much attention. For example, SI, which is represented by Iisi

n

in Eq. �1� below, was carefully omitted in the Hopfield model
of neural network, so that an energy function H and statisti-
cal mechanical method based on H can be usefully applied
�4,5�. We study the system with SI using a standard heat-bath
algorithm �6,7� and give both static �a phase diagram� and
dynamic results �spin-spin time correlation function, TCF
hereafter�. First we consider the system in the thermody-
namic limit and then turn to effects of finite system size.

In Sec. II we introduce our model and its dynamics. It is
noted that disorder is introduced to the SI strength, Ii, by
sampling it according to the probability distribution, p�Ii�,
and that this causes slow relaxation.

Section III is devoted to studying a phase diagram within
the mean field treatment. In Sec. IV a spin-spin TCF is dis-
cussed, where effects of finite system size are also consid-
ered. In Sec. V some discussions are given to relate our
model with other systems recently studied in econophysics
�6� and information processing �8�.

II. MODEL

We consider a system consisting of N Ising spins
�si= �1� �i=1,2 , . . . ,N�, each si feeling at time n the field

f i
n = �

j��i�
Ji,jsj

n + Iisi
n � hi

n + Iisi
n, �1�

where Ji,j and Ii denote the interaction strength of the pair
�i , j� and the self-interaction �SI�, respectively.

Once the field f i
n is given, dynamics of the spin si is gov-

erned by the transition probability p�si
n+1= �1 	si

n=1� to ob-
serve si

n+1= �1 starting from si
n=1 of the form �7�

p�si
n+1 = � 1	si

n = 1� = 1/�1 + exp��2�hi
n + Ii�/T�� . �2�

Similarly

p�si
n+1 = � 1	si

n = − 1� = 1/�1 + exp��2�hi
n − Ii�/T�� . �3�

Here T denotes temperature of the system in energy unit with
the Boltzmann constant set to 1. If there is no SI, i.e., Ii=0
�i=1,2 , . . . ,N� our system satisfies the detailed balance rela-
tion and the system relaxes to the canonical equilibrium dis-
tribution peq�s1 , . . . ,sN��exp�−H�s1 , . . . ,sN� /T� with
H�s1 , . . . ,sN�=−�1 /2��i,j��i�Ji,jsisj �2,5�.

Introducing the two-dimensional probability vector
pi

n= �p�si
n=−1� , p�si

n=1��T with p�si
n=−1�=1− p�si

n=1� de-
noting the probability that si

n=−1 and the suffix T transpose,
one can express Glauber dynamics �2� and �3� more con-
cisely as

pi
n+1 = Api

n, �4�

where the 2�2 matrix A has the elements

A1,1 = �1 + exp�2Mi
n��−1 � �i,

A1,2 = �1 + exp�2Pi
n��−1 � �i,

A2,1 = �1 + exp�− 2Mi
n��−1 = 1 − �i,

A2,2 = �1 + exp�− 2Pi
n��−1 = 1 − �i, �5�

with Pi
n��hi

n+ Ii� /T and Mi
n��hi

n− Ii� /T. For later conve-
nience �see Eq. �18�� �i and �i are introduced in Eq. �5� with
their time �i.e., n� dependence omitted.

Since the magnetization of the spin i is defined by

mi
n = 
si

n� � p�si
n = 1� − p�si

n = − 1� , �6�

we have from Eqs. �4� and �5� that

mi
n+1 = p�si

n = 1�tanh Pi
n + p�si

n = − 1�tanh Mi
n

= �mi
n/2��tanh Pi

n − tanh Mi
n� + �1/2��tanh Pi

n + tanh Mi
n� .

�7�
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Now let us consider a physical role of the SI in Eq. �1�,
with Ii�i=1, . . . ,N� assumed hereafter to be positive. If
si

n=1, the spin feels the field hi
n+ Ii and the self-part Ii tends

to keep the spin in the present state s=1. Similarly if
si

n=−1, the self-part −Ii of the field on the spin hi
n− Ii is

against flipping of the spin to s=1. Thus Ii�	0� may be
considered to represent a kind of activation energy or friction
and its effect is flip inhibiting.

To see this point more clearly, we tentatively consider a
noninteracting system �Ji,j =0�. Then the matrix A in

Eq. �5� is reduced to Ã with the elements Ã1,1= Ã2,2

=1 / �1+exp�−2Ii /T�� and Ã1,2= Ã2,1=1 / �1+exp�2Ii /T��. Ã
has an eigenvalue 
1=1 with an eigenvecor �1 /�2,1 /�2�T,
representing an equilibrium state, and another eigenvalue
tanh�Ii /T� with an eigenvector �1 /�2,−1 /�2�T, representing
a relaxation mode. The relaxation time � is defined to be
1 / 	ln 
2	 �8�, which reduces to �exp�2Ii /T� when
2Ii /T�1. Thus we see that 2Ii may be interpreted as an
activation energy for the spin si to flip.

Since we are mainly interested in effects of SI, we here-
after consider the interaction part of the field f i

n, Eq. �1�,
within the mean field model, Ji,j =J /N, leading to

hi
n = JSn, �8�

where

Sn = �
j

sj
n/N . �9�

Finally we introduce �quenched� disorder in Ii(i
=1,2 , . . . ,N) by assuming that the strength Ii of SI is distrib-
uted according to the exponential law

p�Ii� = �1/T0�exp�− Ii/T0� , �10�

where T0 has the dimension of temperature. In passing it is
noted that a distribution similar to Eq. �10� is considered
before to discuss hopping conduction of a classical particle
by Bernasconi et al. �9�.

III. PHASE DIAGRAM

Since the interaction parameter J�	0� is specified to be,
say 1, the thermodynamic state �phase diagram� depends on
two parameters T and T0 and it can be discussed based on
Eq. �7� as follows.

When n in Eq. �7� is very large, we may put
mi

n=mi
n+1=mi and we have for N→�

mi = �tanh Pi + tanh Mi�/�2 + tanh Mi − tanh Pi� � g�m,Ii	T� ,

�11�

where from Eqs. �7� and �8� Pi= �m+ Ii� /T and
Mi= �m− Ii� /T with m��mi /N. Since Ii is distributed ac-
cording to Eq. �10�, we have a self-consistent equation to
determine the magnetization m as a function of T and T0:

m =� dI�p�I��g�m,I�	T� . �12�

In Fig. 1 we plot m, calculated from Eq. �12�, as a func-
tion of T for �a� 2T0=1.5 and �b� 2T0=1.0. The critical tem-

perature is seen to be Tc1.4 �a� and Tc1.3 �b�. When
Ii=0 �i=1,2 , . . . ,N�, we know that Tc=1.0 for J=1. To see
effects of the self-interaction I on the shift of Tc from
Tc=1.0, we tentatively consider a system with no disorder in
�Ii�, that is Ii= I�i=1,2 , . . . ,N�. In this case we have, by put-
ting p�I��=�I�− I� in Eq. �12�, the self-consistent equation

m = g�m,I	T� . �13�

The critical temperature Tc as a function of I is given by the
equation

dg	�m,I	Tc�/dm	m=0 = 1, �14�

leading to

Tc = �cosh2�I/Tc�„1 − tanh�I/Tc�…�−1. �15�

We observe from Eq. �15� that Tc=1 for I=0 and it goes to
1�1 as I goes to ��. The activation energy I�	0� inhibits
flipping and this raises Tc, which is consistent with the shift
of Tc shown in Fig. 1. In passing it is noted that negative I
enhances flipping and we must cool down the system in or-
der to have spontaneous magnetization, thus Tc→0 as
I→−�.

From the above we see that the system �1� with Eqs. �8�
and �10� has a relatively simple phase diagram �Fig. 1� for
N→�.

IV. DYNAMICAL PROPERTIES: TCF

We now turn our attention to dynamical properties of the
system and consider the equilibrium TCF,
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FIG. 1. Magnetization m as a function of T for �a� 2T0=1.5 and
for �b� 2T0=1.0 with disorder given by Eq. �10�.
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��n� = �
i


si
nsi

0�/N ,

=�
i

�
si
0=�1


si
n�si

0si
0peq�si

0�/N , �16�

where the average 
¯� is over the equilibrium distribution
function �i=1,Npeq�si

0�, where peq�si
0=1�= �1+mi� /2 and

peq�si
0=−1�= �1−mi� /2, with mi given as a solution to Eqs.

�11� and �12�. 
si
n�si

0 on the right-hand side �RHS� of Eq. �16�
denotes the average of si

n when initially it starts from the
state si

0, which can be expressed for, e.g. si
0=1, as


si
n�si

0=1 = �Anp0�2 − �Anp0�1. �17�

Here p0= �0,1�T and �p�2 denote the second element of the
probability vector p �see Eq. �6��.

We first note that the �equilibrium� magnetization
m and thus the matrix A, Eq. �5�, are time �n�
independent as it should be since we are dealing
with the equilibrium TCF in the thermodynamic limit.
With use of the eigenvalue 
1=1 and 
2=�i−�i with
	
1�= ��i / �1−�i� ,1�T, 

1	= �1−�i� / �1+�i−�i��1,1�, and
	
2�=−�i / �1+�i−�i��1,−1�T, 

2	= �−�1−�i� /�i ,1�, we
have

An = 	
1�

1	 + 
2
n	
2�

2	 , �18�

or more explicitly we obtain from Eqs. �16�–�18�

�̄�n� � ��n� −� d Im2�I�p�I�

=� dI���I� − ��I��n � �1 − m2�I��p�I� , �19�

where we have replaced �imi
2 /N and �i��i−�i�n�1−mi

2� /N
by their integral forms in the limit N→�.

When T	Tc we have from Eqs. �11�–�13� that
mi=0�i=1,2 , . . . ,N� ,m=0, and

peq�si
0 = 1� = peq�si

0 = − 1� = 1/2 �i = 1, . . . ,N� . �20�

In this case Eq. �19� is reduced with Eq. �18� to

��n� =� dIp�I�tanhn�I/T� . �21�

Exact calculation can be easily performed for time integral

A � �
n

��n� =� dIp�I��1 − tanh�I/T��−1, �22�

leading to �T	Tc�

A = �1 + T/�T − 2T0��/2 �T 	 2T0� ,

A = � �T � 2T0� . �23�

The correlation function �21� can be estimated by using a
saddle point method to obtain for n�1

��n� = �1/T0�exp�− T/2T0��4nT0/T�−T/2T0 � n−T/2T0,

�24�

with the saddle point Is�n� given by

Is�n� = �T/2�ln�4nT0/T� . �25�

Equation �23� shows that ��n� goes to zero faster than 1 /n
for T	2T0 but it relaxes to zero slower than 1 /n for
T�2T0, consistent with the exact result �Eq. �23��. It is noted
that we obtain, following similar asymptotic analysis, the
same algebraic relaxation �24� for T�Tc.

Numerical calculations of ��n� based on Eq. �19� are
straightfoward once one solves the self-consistent Eq. �12�
with Eq. �11�. In Fig. 2 we depict the relaxation part of ��n�,
i.e., the RHS of Eq. �19�, for T=1.8 �m=0�, T=1.45
�m=0�, and T=1.1 �m= �0.714� for the case 2T0=1.5.
Asymptotic algebraic relaxation is read from Fig. 2 as n−1.2,
n−0.967, and n−0.735, which should be compared with n−1.2,
n−0.966, and n−0.733 from Eq. �24�.

Now we turn to consider effects of finite system size on
the TCF ��n�. To consider this problem, we briefly review
statistics of the maximum value among N random variables,
which are distributed identically and independently �10�.
That is, we have N random variable, Ii�i=1, . . . ,N� distrib-
uted independently according to Eq. �10�. Then the maxi-
mum IM among the N random variables is distributed, fol-
lowing the probability distribution �10�

P�IM� = N�p��IM��N−1 exp�− IM/T0�/T0, �26�

where

p��X� � �
0

X

dIp�I� = �1 − exp�− X/T0�� . �27�

Thus we can estimate the most probable value, which we call
IMP, for IM from dP�X� / 	dX	IMP

=0 to obtain

IMP�N� = T0 ln N . �28�

The upper limit, i.e., �, in the I integral in Eqs. �19� and
�21� must be replaced by IMP=T0 ln N for a finite system
with size N. In Fig. 3 we plot ��n� thus obtained for N
=102 and N=103 together with N=�. For a system with
smaller N the deviation from ��n� for N=� occurs earlier as

1
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10-4

n

φ̄
(n

)

FIG. 2. �̄�n�, Eq. �19�, as a function of time n for T=1.8 �dotted
curve�, T=1.45 �dashed curve�, and T=1.1 �full curve� in the case
2T0=1.5.
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expected. If we fix time n in Eq. �19� or �21�, the saddle
point, given by Eq. �25�, must be smaller than IMP in order
for the saddle point method to be applicable. From this we
can say that the asymptotic behavior �24� is valid only for
n� �T /4T0�N2T0/T.

To study effects of finite system size numerically, we per-
formed Monte Carlo simulations, in which one updates each
probability vector pi

n according to Eq. �4�, with pi
0 either

taking the value �1,0�T or �0,1�T with the probability
peq�si=−1� and peq�si=1�, respectively. Magnetization mn is
updated by mn=�mi

n /N with mi
n= �pi

n�2− �pi
n�1, starting from

m0 chosen to be the solution of Eq. �12� �see Eq. �16��. In
Fig. 3 simulation results are also shown, which were ob-
tained as an ensemble average over 105 �106� samples for the
system with N=103 �102� spins. We observe good correspon-
dence between theory and experiment except for the time �n�
region where ��n� becomes of the order 10−4 and the fluc-
tuation in ��n� becomes large.

V. SOME REMARKS

In this paper we studied effects of SI on static and dy-
namic properties in a simple spin system. Various properties,
related to an equilibrium phase diagram and the TCF, of the

system can be qualitatively understood once we interpret the
SI as an activation energy.

In this connection we briefly touch upon two models,
which may have some overlapping with our model, Eqs.
�1�–�3�. To study dynamics of price in stock markets, Kaizoji
et al. �6� proposed a spin model in which the field f i

n takes
the form

f i
n = �

j�i

Ji,jsj
n + bsi

n	mn	 , �29�

with b a constant. Comparing Eq. �29� with Eq. �1� we notice
that SI strength Ii in Eq. �1� is replaced by b	m	, whose ef-
fects is discussed in connection with traders’ tendency of
switching between majority and minority groups.

A simple threshold system with feedback �8� gives an-
other example of SI. Here the output at time n, yn, in re-
sponse to the input signal sn is expressed in terms of the
Heaviside function ��x� as

yn = ��sn + Fyn−1 + �n − �� , �30�

where ��x�=1 for x	0 and ��x�=0 for x�0. Here F and �
denote the feedback strength and a threshold value, respec-
tively, and the noise �n is assumed to be Gaussian white with
the variance �. If we introduce temperature T of the system
by T�0.4��2, we notice that the transition probability Eq.
�23� in Ref. �8� has similar form as Eq. �2� with F playing the
role of SI. Thus feedback F in a simple information process-
ing device turns out to cause friction to flipping in the output
and this point, that is, how the system output yn follows the
time-dependent input signal sn, is discussed in �8�. When F
becomes large, the timescale of variation of yn becomes slow
with enhanced retardation and hysteresis in yn.

From these examples it is seen that SI in spin systems
may give rise to interesting phenomena and we hope that our
work here may stimulate further studies in neural networks
and other simple interacting threshold systems �11�.
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FIG. 3. ��n� for 2T0=1.5 and T=1.8 for N=102 �dotted curve�
and N=103 �dashed curve�. Monte Carlo results are shown by
squares �N=102� and circles �n=103�.
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